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Steady liquid flow in a variable-area rectangular duct rotating rapidly about an 
axis perpendicular to its centre-line is treated. This problem is significant because 
the idea of driving a liquid through a rotating system has been largely overlooked 
by rotating-fluid dynamicists and because it closely resembles the flow inside 
the impellers of centrifugal pumps and hydraulic turbines. For a prototype 
formed by joining a semi-infinite constant-area duct and a semi-infinite duct 
with straight diverging walls, the flow in the diverging duct is carried entirely by 
large, O(E-4) velocities in a boundary layer of thickness O(E4) adjacent to  one 
of the (side) walls parallel to the axis of rotation, where E is the (small) Ekman 
number. With a vertical axis of rotation this high-velocity boundary layer is 
adjacent to the side wall on the right when facing in the flow direction. For a 
diverging or converging duct placed between two semi-infinite constant-area 
ducts, large, O(E-4) velocities occur in side-wall boundary layers on both sides 
of the variable-area duct and on the left and right sides of the upstream and 
downstream constant-area ducts respectively. The existence of high-velocity 
side layers in rapidly rotating rectangular ducts should be relatively easy to 
prove experimentally and actual measurements of their velocity profiles would 
provide a good test of the present theory. 

1. Introduction 
This paper treats steady incompressible flow in rectangular ducts with plane 

parallel sides at z = k 1 and symmetrically diverging or converging top and 
bottom a t  y = k f(x), where the co-ordinates are rotating about an axis parallel 
to the y axis with respect to some inertial frame. The constant speed of rotation 
is assumed to be sufficiently large for inertial effects to be neglected throughout 
and for viscous effects to be confined to thin boundary layers and free shear layers. 

The general form of the',solution for f '  + 0 is derived in $2.  The O(1) flow in 
the inviscid core follows the geostrophic surfaces x = constant and the O( 1) flow 
in the x direction is carried by large, O(E-4) velocities in boundary layers of 
thickness O(E*) adjacent to the sides, where E is the (small) Ekman number. 
The three-dimensional boundary-value problem governing the flow in each of 
these side layers is reduced to a two-dimensional equation. Since these two 
equations involve x derivatives f must be given for all x in order to solve the 
problem for any x. 

A prototype formed by joining two semi-infinite ducts with straight walls with 
I4 F L M  69 
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f' = 0 for x < 0 and f' = constant = s > 0 for x > 0 is considered in $3. The 
two-dimensional equations governing the E* side layers downstream (x > 0) are 
reduced to eigenvalue problems involving infinite-dimension square matrices. 
Eigenfunction expansions are used to represent the solutions in these layers with 
the coefficients in these expansions determined by matching with the solution 
in the upstream duct (x < 0). 

Approximate solutions to the eigenvalue problems are given in $ 4 .  The 
numerical results reveal that O(E-4) velocities occur only in the E4 side layer a t  
x = 1 in the downstream duct. The asymptotic form of the flow in this layer for 
x+m is presented for several values of s. The structures of the free shear layers 
a t  x = 0 in this prototype are discussed in $ 5 .  

Extension of the analysis for the prototype with straight walls to more general 
duct geometries is considered in $ 6 .  Application of the analysis of $6  2-4 to a 
general diverging or converging duct placed between two constant-area ducts 
(f' = 0 for x < 0 and x > I) reveals that O(E-*) velocities occur in both E4 side 
layers in the diverging duct (0 < x < I), in the E* side layer at x = - I in the 
upstream duct (x < 0) and in the E* side layer at z = I in the downstream duct 
(x > I). The high-velocity side layers in the constant-area ducts carry no net 
flow but provide a redistribution of the flow in the y direction, which is necessary 
in order to match the flows in the E )  side layers in the diverging duct. Barcilon 
(1967) has also considered flow through a rotating system and discussed vertical 
transport in the E*-layer with E-S velocities. Extensions to ducts with sym- 
metrically diverging or converging sides and to ducts with non-rectangular 
cross-sections are also discussed in $ 6. 

2. Formulation for a general duct 
The flow considered here is incompressible and steady relative to a Cartesian 

co-ordinate system rotating a t  a constant angular velocity w = w 9  with respect 
to some inertial system, so that the non-dimensional governing equations are 

V . V  = 0, Ro(v.V)V = -V@-9  X V + E V ~ V ,  ( la ,b )  
where @ = (p/p + q5 - $w2a2)/2uU,d 

is the reduced pressure (Greenspan 1968, p. 6). Here f is a unit vector in the 
y direction, v is the velocity, Ro = UC/2wd and E = v/2wd2 are the Rossby and 
Ekman numbers respectively, p is the true pressure, p is the density, 9 is the 
gravitational potential, a is the perpendicular distance from the axis of rotation, 
U, is a characteristic velocity, d is a characteristic length and v is the (constant) 
kinematic viscosity. 

The flow is confined by a rectangular duct with its centre-line perpendicular to 
the axis of rotation, with plane parallel sides (parallel to the axis of rotation) and 
with symmetrically diverging or converging top and bottom (see figure 1). Half 
the distance between the sides is used for d and the average velocity at some 
cross-section, say x = 0, is used for U,, so that 
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FIGURE 1. Duct. 

The boundary conditions are 

v = 0 at y = +f(x), x = k 1.  (3% b)  

Together with the governing equations (1) these form a homogeneous problem 
whose solution is normalized by the condition ( 2 ) .  

R o < I ,  E < I ,  (4a, b )  
For a sufficiently large w 

so that the inertial and viscous terms in (1 b)  can be neglected outside boundary 
layers and free shear layers. It turns out that the present solution involves large, 
O(E-4) velocities in boundary layers of thickness O(E)) adjacent to the sides, so 
that the condition Ro < E% is required in order that the inertial terms may be 
neglected everywhere (Walker 1974). Under condition ( 4 b )  the flow region can 
be divided into several parts, certain viscous terms in (1 b )  being negligible in 
each subregion. The various subregions (shown in figure 2 )  are (a) the core, 
(a’) primary Ekman layers, (b ) ,  (c) side layers at  z = 1 respectively, (b’), (c’) 
secondary Ekman layers and (b”), (c” )  corner regions. 

The variables in the primary Ekman layers are determined locally by the 
tangential velocity outside and automatically match the core variables provided 
that the latter satisfy the usual Ekman conditions at y = 5 f ,  which relate the 
normal velocity to the normal component of the relative vorticity (measured in 
the rotating reference frame). A similar result holds for the secondary Ekman 
layers, so that they can also be ignored as long as the side-layer variables satisfy 
certain modified Ekman conditions at y = i-f. Each corner region is needed to 
represent properly a singularity in the side-layer solution there. In  the corner 
regions there is very little simplification in (1) beyond neglect of the inertial 
terms and these regions have never been fully analysed. Fortunately the first 
approximation can be obtained everywhere else without considering the corner 
regions in detail. 

Expansions in E may be used to determine the flow in each region. First the 
co-ordinates within a region ase resealed such that all derivatives are O(1). The 

14-2 
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z= 

variables v and @ are then written as series in ascending fractional powers of E 
with coefficients which are functions of the (possibly scaled) co-ordinates alone. 
These asymptotic expansions are not simply power series in some fractional 
power of E ;  the appropriate power of E for each term depends upon the previous 
terms and upon the expansions in adjacent regions which must be matched. 
Some series begin with negative powers of E. Ultimately the justification for the 
powers used in each expansion lies in the compa,tibility of the complete solution. 
The coefficients are denoted by v; and @;, where the superscript r denotes the 
region and the subscript p denotes the power of E for this term. 

The leading terms in the core expansions satisfy (1) (with inertial and viscous 
terms neglected and with no resealing) and the Ekman conditions 

and thus have the form 
f’u$T vg = 0 a t  y = +f, 

U: = V$ = 0, W; = -d$/dx,  @: = $, 
where $(x) is an integration function. The O( 1) core flow is geostrophic, the duct’s 
cross-sections x = constant being the geostrophic surfaces, so there is no 0 ( 1 )  
flow along the duct within the core. 

Since condition ( 2 )  rgquires a total flow of 4f(O) along the duct and since the 
order of magnitude of the velocity in an Ekman layer is the same as that of the 
tangential velocity outside, u must be O(E-*) in at least one of the side layers. 
There is thus a dramatic difference between flow in a duct with diverging or 
converging top and bottom as here and flow in a duct with parallel top and 
bottom, in which the total flow is carried by an O( 1) core velocity u (see 9 3). The 
z co-ordinate within each side layer is stretched by introducing new co-ordinates 

g = E-*(zT 1) 
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for the layers a t  x = k 1 respectively. After some manipulation (1) become 

a q a y  + a3U:+/ap = 0, 
au:+/ay - aw+pp = 0, 

( 5 a )  
( 5  b )  

aqyac  = u:+, w;; = a w + / a y -  a q p z ,  (5c7 d )  

where r = b or c. The appropriate Ekman conditions are once again simply 

f 'u :+~v '+=O at y = ? f .  

The boundary conditions ( 3  b )  become 

ur = vr = w;; = 0 at g = 0, (7  a-c) 
-3 

- 

while matching with the core solution yields 

u-3 = 2.'-) -0, - Q = $  as C+co (8a-c)  
and u C g  = vuC+ = 0, (D; = @ as C-. -a. ( 9  a-c) 

Henceforth only diverging ducts will be considered. Solutions for converging 
ducts are obtained by simply changing the signs of certain variables in the 
solutions for geometrically similar diverging ducts (i.e. the solution for a duct 
with f '  > 0 is normalized to give a total flow of - 4f(O)). 

Following Howard (1969),  separation of variables is used to solve ( 5 a ,  b) .  For 
the layer at z = - 1, the solution which satisfies conditions ( 6 ) ,  (7a ,  b )  and 
(Sa ,  b )  is m 

~ 5 ,  = Z dn(x )  Fn(6) cos [(%-a)  nyf-lI, 

VB, = - C. d,(x) Pn(C)sin[(n-a) n~f-llt 

( 1 0 a )  

( l o b )  

n = l  
00 

n = l  

where P, = v, sin (33 v, 6) exp ( - vn c), vn = t [ (n  - a)nf-']+, 
a = n-1 arctan f ', 

and for the layer at x = 1, the solution which satisfies conditions ( 6 ) ,  (7 a, b )  and 
( 9  a, b )  is m 

uC-+ = 2-: bn(x) an(<) cos [(n+a)nyf-l],  

vC) = C bn(x) Gn(C) sin [(n f a )  nyf-l], 

(11 a )  

(11 b )  

n=O 
00 

n=O 

where G = Ilc,siii(33p,C)exp(pc,C), pn = &[(n+a)nf-'Ij. 

The trick in these separation-of-variables solutions is to replace u'j and v'g with 

U = uT3 cos (anyf-') +vT+ sin (an&'), 

V = vyt cos (anyf-l) - ~'4 sin (anyf-l) 

h 

h 

SO that the boundary conditions ( 6 )  become simply 

P = o  at y = ? f  

(Howard 1969). The solution ( l o a )  is introduced into ( 5 c )  to obtain @D,b, the 
integration function being determined by condition (8 c), while the solution (1 1 a ) ,  
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equation (5c)  and condition (9c) give 0;. Finally, wt  and w; are given by ( 5 d ) .  
The fact that the solutions (10) begin with n = 1 while the solutions (1 1) begin 
with n = 0 results in a fundamental difference between the two side layers. It 
turns out that this difference is reflected in the fact that there can be a flow in 
the layer a t  z = I while there is no flow in the core or in the layer at z = - I, but 
that a flow cannot exist in the layer at  z = - I without an accompanying flow in 
both the core and the layer a t  z = I. 

Side layers of thickness O(E)) occur in some rotating rectangular ducts. How- 
ever, the velocity along such a layer is independent of y so these layers can only 
occur when the distance between the top and bottom does not change along the 
layer. Thus Ei-layers do not occur in the present duct as long as f '  =I= 0. 

Only the determination of the functions $(x), b,(x) and dn(x) remains. The 
only condition (7c)  which has not yet been applied yields a pair of equations 
governing these functions, the independent variables being x and y. Since these 
equations contain x derivatives,f(x) must be given for all x (or suitable boundary 
conditions added a t  the ends of a finite interval) in order to determine the solution 
for any x. Iff" + 0 the equations can only be solved using numerical relaxation 
schemes, while for the special casef" = 0 the equations can be reduced to a pair 
of eigenvalue problems. Fortunately this special case represents a prototype and 
the solution for it can be used to approximate solutions for more general ducts. 

3. Prototype with straight walls 
A prototype is formed by joining two semi-infinite ducts with straight walls, 

one with diverging top and bottom and one with parallel top and bottom, SO that 

for x < 0, 

c+sx for x >  0, 

where c and s are positive constants. The flow subregions in a y section (i.e. x, z 
plane) of this duct are shown in figure 3 together with the letters used as super- 
scripts for the coefficients in the expansions for each region. There are also 
Ekman layers of thickness O(E4) above and below each of these regions as well 
as corner regions with O(E*) by O(E6) cross-sections along the corners at  y = kf, 
x = k I and a t  x = 0, y = & c .  

Downstream duct x > 0 

The analysis of $ 2  applies in the downstream duct (x > 0) and the superscripts 
a, b and c denote the same regions as there. Application of the boundary condition 
(7c) to the wg and'w; derived from solutions ( I O U )  and ( l la)  now gives 

W 

4f@= 34 { [ fd~- (n -a )nd , ]cos[ (n -a )ny f - l ]  
n = l  

+d,(n-a)nsyf-lsin [(n-a)nyf-l]>, (12a) 
W 

4f$' = 3: C {[fb~,+(n+a)nbn]cos[(n+a)nyf-l] 
n=O 

+ b,(n + a)nsyf-lsin [(n + a)nyf-l]}, (12 a) 
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where f = c+sx, a = n-larctans and a prime denotes differentiation with 
respect to x. 

Equations (12)  can be converted into two infinite sets of simultaneous ordinary 
differential equations by multipIying each by cos (knyf-l) and integrating with 
respect to y from - f to f: 

m 

n=l 
x (-1)"(fd;[(n-a+k)-1+(n-a-k)-1] 

2 ( - l),{jbA[(n + a + k)-l+ (n + a - k)-1] 
+ Sd,(% - a) [(n- a+ k)-2 + (a- a- k)-2]} = - H k ,  ( 1 3 ~ )  

m 

n-0 
+Sb,(n+a)[(n+a+k)-2+(n+a-k)-2]}  = H k ,  (13b)  

where 
8nf$'/34 sin (an) for k = 0, 

for k = 1 , 2 , 3  ,.... 
The next step is to reduce (13)  to a pair of decoupled eigenvalue problems 

involving infinite-dimension square matrices. First the substitutions 

b, = Bnfh, I) = d, = 0 

lead to an eigenvalue problem 
AB = MB, 

where B is a vector with components B, (n = 0, 1,2 ,3 ,  ...) and M is a square 
matrix defined by M = L-lK, 
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with L,, = (n + a + k)-l+ (n + a - k)-l, 

I<,, = - (n + a )  [(n +a + k)-2+ (n + a - k ) 4 ]  

for k, n = 0, 1,2,  . . . . There is an infinite number of discrete eigenvalues hi with 
an eigenvector B(Q = (23:') for each eigenvalue. Next the substitutions 

b,  = BJY, @ = Y f Y ,  d, = D,fY 

lead to a second eigenvalue problem 

yD = ND, 

where D is a vector with components D, (n = 1 ,2 ,3 ,  ...) and N is a square 
matrix defined by 

N = P-lR, 

with P,, = (n-a+k)-l+(n-a-k)-l, 

R,, = - (n-a)  [ ( n - ~ t + k ) - ~ + ( ~ ~ - ~ ~ - k ) - ~ l  

for k, n = 1,2,3, . . . . Again there is an infinite number of discrete eigenvalues yi 
with an eigenvector D(0 = {Dg)) for each eigenvalue. The values of and 23:) 
(n = 0,1 ,2 ,  . . .) for each eigenvalue are obtained from (13 a )  with k = 0 and (13 b )  
respectively. The only eigenvalue which is missed by this scheme is A, = 0, for 
which B:) = DE) = 0, corresponding to an arbitrary additive constant pressure 
Y(O). For the first set of eigenvalues there is flow in the side layer a t  z = 1 alone. 
Flow in the side layer a t  z = - 1 cannot exist without a non-zero value of @ I .  

Thus for the second set of eigenvalues there is a pressure gradient in the core 
which is balanced by the Coriolis force produced by an O(1) transverse core 
velocity wg. This core velocity means that there is an O( 1) flow into or out of the 
side layer a t  z = 1 at each cross-section, so there must also be a flow in this layer. 
Together, the two sets of eigenfunctions are complete. These eigenvalue problems 
will be treated numerically in $4. 

The solution (10 a )  can be integrated over the cross-section of the side layer at 
z = - 1 to obtain the total flow through this layer, 

m 

Qb = - Q x 39r-1 sin (an-) 2 ( - l)nd,(n - a)-l, (14 a )  
n = l  

and similarly integrating solution (1 1 a)  gives 
m 

for the layer at z = 1. Therefore values of hi and yi greater than minus one must 
be excluded because the corresponding flows are unbounded as x-tco, the one 
exception being yo = 0, which corresponds to zero flow everywhere. The solution 
in the downstream duct can now be expanded in the solutions corresponding to 
the remaining eigenvalues. The coefficients in this expansion are determined by 
matching the side-layer variables with the variables in the intersection regions 
( p )  and (u) respectively. 
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Matching at x = 0 and upstream duct x < 0 
In the intersection regions (n), (o), ( p ) ,  ( s ) ,  ( t )  and (u) the x velocity u is at  most 
O(E-J),  so that the x component of ( 1  b ) ,  together with the boundary condition 

w = O  a t  { = O ,  

in all of these regions, yields the matching conditions 

@)gb(O> Y,  0) = @@, Y ,  O ) ,  @@, y ,  0) = @M y, O ) ,  (15a, b )  

where the independent variables in the upstream Eg side layers (9)  and (h) are 
also x, y and c. The independent variables in the upstream ES side layers (e)  and (f) 
are x, y and <, where 

for the layers at  z = & 1 respectively. 
6 -  - E-i(zT 1 )  (16) 

The core solution for fully developed flow in a constant-area rectangular duct is .f = 1, ?I$ = w$ = 0, @)o” = 2, 

where an inessential additive constant in @$ has been dropped. Since fully 
developed flow is symmetric in x ,  only the side layers (e)  and (9) at z = - 1 are 
considered. The variables in the ES side layer ( e )  for fully developed flow are 

@; = - I ,  @$ = E+2tc3exp(-@-&~3), 

= a q l a c ,  = ug = w; = 0, v; = - y a 4 q l a p .  

In  the E )  side layer ( g ) ,  which matches the non-zero value of this vP at 6 = 0, 
W 

= 2--%~-36-l[~ + C [a, exp ( - 2an {) - 6, exp ( - un 5)  
n=l 

x cos (3*an 6) - 2, exp ( - a, 6) sin ( 3*u, [)I cos (nnyc-I), 

x cos ( 34an [) + t, exp ( - an {) sin (3tan c)] sin (nnyc-I), 
h 

where a, = 2-1(nnc-1)*, &, = ij, = - 2-%c-&( - l)nn--ln--l, 

t, = -3% ,, a a t g a g  = u$, @g = - 1. 

If the flow in the upstream duct (x < 0) remained fully developed until it  
entered the upstream ES free shear layer (j) and intersection regions ( l ) ,  (n), (4)  
and (s), then 

Equations (15) could then be reduced to two infinite sets of linearly independent 
simultaneous equations involving the unknown coefficients in the eigenfunction 
expansion of the downstream solution by multiplying by cos (knyc-1) and inte- 
grating between y = & c. However, since some of the eigenvalues hi and yi are 
excluded these two sets of equations would represent an overdetermined system. 
Thus matching places certain restrictions on OE(0, y ,  0) and @ ; ( O ,  y ,  0) and the 

q o ,  y ,  0) = - 1, @ ( O ,  y ,  0) = 1. 
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flow must deviate from fully developed flow upstream of x = 0 in order to satisfy 
these restrictions. In  particular, since 

C r n  

0 

-m  
w o ,  y, 0) - $ ( O )  = 1 uc-+ (0, Y, 5 )  d 5  

represent the vertical distributions of the flows entering the downstream side 
layers at  z = 1 from the intersection regions ( p )  and (u), and since the exclusion 
of certain eigenvalues appears to mean that these distributions cannot be inde- 
pendent of y, it  follows that the upstream flow must involve vertical redistribu- 
tion of the flow. It will turn out that the prototype is a special case in which these 
distributions happen to be independent of y but that this is not true of more 
general ducts. 

The first-order horizontal velocity in the upstream core ( d )  and in the Ef 
layers ( e ) ,  (f) ,  (j) and (k) is independent of y (Taylor-Proudman theorem). The 
vertical distribution of flow in the E )  free shear layer (4) must also be independent 
of y since 

wL+dy = QDg(0,z) - @ ( O ,  z ) ,  

X = E - ~ x ,  7 = E - k .  (17% b )  

. f I m  

where Qk are functions of ( X ,  z )  and 

In  fact @(O,z)  = @t(O,z)  and this E4 layer carries no O(1) flow (see $ 5 ) .  The 
velocity in the intersection regions (I), (m) ,  (n), (o ) ,  ( p ) ,  (p), (s), ( t ) ,  (u) and (v) is 
too small to account for an 0 ( 1 )  vertical flow. Therefore the upstream E )  side 
layers (9)  and (h) must accomplish the required vertical flow redistribution. 

The variables in the upstream E4 side layers satisfy equations (5) and boundary 
conditions (7) with r = g or h as well as the conditions 

vT4 = 0 at y =  &c, (18)  

uh, = wh, = 0, 'Do" = @$(x, 0) as <-+ - co, (20 a-c) 
uB-+ = US+ = 0, Q.0" = @g(x, 0)  as c+co, ( 19 a-c) 

where @$f are functions of (x,  6 )  and 4 is given by (16) .  Once again separation 
of variables gives the solutions of ( 5  a, b )  satisfying conditions (7 a, 6 )  and (1  8) 
and, for the layer at z = - 1,  conditions (19a, b ) ,  so that 

m 

wB_g = a,(x) exp ( - crnc) sin (3hrn 5)  sin (nngc-I), 
n=l  

or, for the layer at z = 1, conditions (20a, b ) ,  so that 

m 

v!., = cn(x) exp (g,<) sin ( 3 6 ~ ~ 5 )  sin (nnyc-I), 
n = l  

where cTn = +(nnC-l)+. 
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From (21 a )  and (22a) 

u'_gdy = 0. I:, 
Thus there is no net flow along one of these side layers, so that if the flow is in the 
+ x direction near the plane of symmetry y = 0 then it must be in - x direction 
near the top and bottom. These layers receive flow from the intersection regions 
(n) and (s), redistribute it vertically and return it to the same regions (n) and (s). 

The determination of the functions a, and c, remains. Equation (5c), together 
with solutions (21  a )  and (22a) and conditions ( 1 9 ~ )  and ( ~ O C ) ,  gives @: and t'hen 
( 5 4  gives w:. The only remaining condition (7c) now gives 

a@.g(x, o)/ax = a@{(x, o)/ax = 0, 

a; - nnc-la, = c; + nm-lc, = 0. 

(23a,b) 

(23 c, d )  

The flow must become fully developed as x-+ - 00, so that the appropriate solu- 
tions of (23 )  are 

@g(x, 0) = - 1, @{(x, 0) = 1, a, = A,exp (nm- lx) ,  c, = 0. 

Thus there can be a high-velocity sheet jet adjacent to the side x = - 1, but there 
cannot be one adjacent to the side z = I. This sheet jet at  z = - 1 has as much 
reverse flow as forward flow and thus accomplishes a vertical flow redistribution 
while carrying no net flow itself. The coefficients A ,  are determined by the 
matching (15a) while @t(O,y,O) = 1 in (15b)  (see $4). 

There is no net flow in the E* side layers because the n = 0 term is missing from 
the series ( 2 l a )  and (22a). As Howard (1969)  points out, the n = 0 term in the 
series (1 I a )  degenerates into an E* side layer as a + 0, so itis reasonable to expect 
that the Et side layers ( e )  and ( f )  might involve O(E-t) velocities and might thus 
carry an O( 1) flow. Solutions for such layers exist and match the core variables 
as [+ & co for the layers a t  z = I respectively, but involve non-zero values of 
ue,f a t  6 = 0, which the E* side layers (9)  and (h) cannot match and also satisfy 
the boundary conditions (3  b) .  Thus E* side layers involving O(E-t) velocities 
do not occur. 

The O(E-*) velocities in the Eg side layer (9) do not create any O(1) perturba- 
tions in the core (d) or in the E i  side layers ( e )  and ( f ) .  The upstream core variables 
are given by 

-4 

u$ = a q p ,  v: = 0, wo" = -a@@%, 

Equation (24) follows from the O(E*) Ekman conditions 

v$ = T 2-4(aW$/ax2+ @@;l/azZ) at y = c 

together with the fact that 0.0" and v$ are independent of y. The boundary con 
ditions on @$ are 

@ $ = z  as x+-co, @:=+I at  Z = ~ I  
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and the values of @$ at x = 0 are given by matching variables in the core (d) and 
the upstream Ef free shear layer (j). Once @(O, z )  is known the solution of (24) 
can be obtained using separation of variables or a numerical relaxation scheme, 
for example. No specific solutions for @$ are presented here. 

To first order the solutions in the Ea side layers ( e )  and (f) are given by the 
solutions for fully developed flow (which match uf = 1) multiplied by u$(x, & 1) 
at each x section. The structure of the E* side layers (9)  and (h)  matching these 
layers is also given by a simple resealing of the fully developed flow structure, 
where this is superimposed upon the high-velocity structure for the layer (9) at 
z = - I .  

The upstream and downstream Ef side layers will be considered further in $ 4 
and the free shear layers (i), (j) and (k) will be discussed in $5. 

4. Eigenvalues and the asymptotic flow for x --f m 

The eigenvalue problems derived in $ 3  can be solved approximately by 
truncating the infinite-dimension matrices L, K, P and R after k, n = N .  A stan- 
dard computer program for finding the eigenvalues of a general (asymmetric) 
real square matrix then yields N + 1 values for hi and N values for yi. In  each 
case this approximate scheme gives both real and complex eigenvalues, the 
magnitude of the real part of each complex eigenvalue being greater than the 
magnitudes of all the real eigenvalues. For N = 70 there are 46, 28, 13 and 0 real 
values for both hi and yi for a = 0.125, 0.25, 0.375 and 0.5 respectively. Testing 
with N = 80 and 90 reveals that all but two of the real values for N = 70 and 
any a are independent of N to eight significant figures and are thus eigenvalues 
for the original problems, which correspond to N -+ co. 

For the real eigenvalues which do not change when N is increased, several 
patterns emerge from t,he numerical analysis. First, 

A,, = -1, hi < -1, yi > 0 for all i + 0. 

Thus all yi except yo = 0 are excluded and no hi is excluded. The solutions in the 
side layer ( b )  a t  z = - 1 and in the core (a)  are 

Ub3 = vb; = 0, Q.0" = y c o ) ,  9 = qw). 

The matching (15a) gives 

Y(O)=--l, A , = O  for n = 1 , 2 , 3  ,.... 
For this prototype O(E-4) velocities do not occur in either the upstream Ef 

side layers (9)  aqd (h)  or the downstream Ef side layer (b)  at z = - 1 and O(1) 
velocities do not occur in the downstream core (a).  This is not true of most other 
duct geometries (see $ 6). 

The second pattern emerging from the numerical analysis is the equation 

A.=-l-y i (25) 

for i = 0, 1, 2,3, . . ., where the eigenvalues hi and yi are arranged in ascending 
magnitude. Finally, the differences between adjacent eigenvalues (either A, or yi) 
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LX = 0.125 
0~0000 
7.6463 

15.6312 
23.6278 
31.6266 
39.6260 
47.6256 
55.6254 
63.6252 
71.6250 
79.6248 
87.6246 

LZ = 0.25 
0~0000 
3.7741 
7.7565 

11.7528 
15.751 6 
19.7510 
23-7506 
27.7504 
31.7502 
35.7500 
39.7498 
43-7487 

= 0.375 
0~0000 
2.5571 
5.2118 
7.8763 

10.5423 
13-2087 
15-8752 
18.541 8 
21.2084 
23.8750 
26.5416 
29.2082 

TABLE 1. First twelve eigenvalues yi for cc = 0.125, 0.25 and 0.375. 
hi = --yi-l 

quickly approach asymptotic values as i increases, these values being 8 , 4  and 25 
for a = 0-125, 0.25 and 0.375 respectively. Note that these asymptotic values are 
a-1. The first dozen yi are given in table I for a = 0.125,0.25 and 0.375, while the 
first dozen hi follow from (25). 

The coefficients in the eigenfunction expansion of the solution for the down- 
stream E4 side layer at  z = 1 are now determined for ; given a by the matching 
(15b) with Qt(0, y ,  0) = 1. These coefficients are not presented here. The basic 
characteristics of the flow in this side layer are revealed by the asymptotic form 
of the flow for x-tco, so only velocity profiles for this asymptotic flow and not 
those for various x sections are presented here. 

Equation (13 b )  with k = 0,  b, = B, f A and @ = 0 becomes 
co 

( A  + 1) ( - l), B,(n + a)-l = 0, 
n=O 

so that either A = - I or, according to (14 b ) ,  &" = 0. Therefore the flow associated 
with A, = - 1 carries the entire flow of 4c. The flows associated with A, for 
i = 1,2 ,3 ,  . . . , involve no net flow and are needed in order for the side layer (c) to 
accept a flow which is uniform in y at x = 0. These flows die out algebraically 
faster than that associated with A, as x-tco so the latter represents the asymp- 
totic form of the flow as x-+ co. As an eigenfunction it is multiplied by a coefficient 
which is determined by the matching ( 1 5 b )  in the present scheme. Equations 
( 2 )  and ( 1 4 b )  can also be used to determine this coefficient and give the same 
value to eight significant figures. The O ( E 4 )  velocities associated with A, can 
be rescaled into profile functions which are independent of x and c and depend 
only on a, Y = yf-l and 2 = - g-4, namely 

uc_g = cf-4U, uc4 = cf-tv. 

Figure 4 gives profiles of U at the plane of symmetry Y = 0 for a = 0-125, 0.25 
and 0.375, while figure 5 gives profiles of both U and V a t  Y = 0,0.5 and 1.0 for 
a = 0.25. 
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U 

26 
2.4 
2.2 
2.0 
1.8 

1.6 

1.4 
1.2 

1.0 

' 0.8 
0.6 

0.4 

0.2 
0 

-0.2 

FIUTJRE 4. Profile function U at Y = 0 for u = 0.125, 0.25 and 0.375. 

FIGURE 5. Profile functions C arid V at Y = 0, 0.5 and 1.0 for a = 0.25. 
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For a = 0.25 the flow is forward ( U  > 0) and away from the plane of symmetry 
Y = 0 (V > 0) for 0 < Z < 4 and for 8 < Z < 12, but is backward ( U  < 0) and 
towards Y = 0 ( V  < 0) for 4 < Z < 8 and for 12 < Z. Both U and V are effec- 
tively zero beyond Z = 15. The velocity U a t  Y = 0 is slightly less than twice 
the value of U a t  Y = 1 for all Z. As cc increases, the maximum value of U at 
Y = 0 increases while the Z values for U = 0 decrease, producing steeper 
velocity profiles. Also the ratio of U at Y = 0 to U at Y = 1 increases, so that the 
flow becomes more concentrated near the plane of symmetry Y = 0. As a+O 
the magnitude of U decreases while the Z values for which U remains appreciable 
increase. Physically, the side-layer thickness grows while the side-layer velocity 
decreases until the two side layers merge and become the core and E t  and E )  side 
layers for fully developed flow. Analytically, several intermediate analyses for 
small a would be needed to show how a flow carried by a high-velocity sheet jet 
adjacent to the side x = 1 evolves into the radically different fully developed 
flow. 

5. Free shear layers at x = 0 
The Ea free shear layers (j) and (k) receive the total flow of 4 c  from the 

upstream core ( d )  and deliver it to the intersection regions ( s )  and (u), which 
pass it on to the downstream side layer (c). The variables in the upstream layer (j) 
are 

U$ = a@{laz, V{ = - y a4@$/ax4, wi, = - a@$/ax, (26) 
where @$(X,  z )  satisfies 

2iC a4@;lax4- aw$/ax2 = 0. 

Equation (27) follows from the O( 1) Ekman conditions at  y = 5 c and X i s  defined 
by (17 a).  The solution of (27) which matches the upstream core solution is 

= @$(o, x )  + F,(z) exp (2-fc-tX),  

where both @g(O, x )  and PI must be determined by matching the solution for the 
E* free shear layer. 

The variables in the downstream Ef shear layer ( k )  are given by (26) with 
j replaced by k, where @ i ( X ,  x )  satisfies 

c a4@,k/ax4- 2-t(  1 + s 2 ) t az@:/ax2 + s a@;/ax = 0, (28) 
which again follows from the O(1) Ekman conditions a t  y = & c. Matching the 
downstream core and intersection region ( p )  gives the conditions 

@:=-I  as X-+m andat  z = - l .  (29% b )  

COS ( t X )  $(t, 2 )  at, 

The Fourier cosine transform satisfying condition (29 a), 

a.0" = - 1 + 27f-1 
/om 

reduces (28) to an ordinary differential equation in x with a solution 

= b - l S z  {cP!(x*) - [ct2 + 2-9(1+ s2)4] F'(z*)) 
-1 

x exp { - t%-1[ct2 + 2 4 ( i  + S~)$I  ( x  - z*)} dz*, 
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which satisfies condition (29b) .  Here F2 = a@$aX(O, z )  and F3 = a3@,k/aX3(0, z )  
are unknown functions of z. 

Although the tangentialvelocities uL4 and 05, A (1 + sZ)-4(uk4 5 S V ’ ~ ~ )  in planes 
z = constant are zero at  y = c c, the corresponding tangential velocities ujli and 

in the Ekman layers above and below the Ef free shear layers (j) and (k) are 
not zero, and at X = 0 these velocities account for an O(Ei) flow into or out of 
the Ekman layers (i’) above and below the E* free shear layer (i). The flow into 
(or out of) these Ekman layers (i’) from the upstream Ekman layers (j‘) is not 
equal to  the flow into (or out of) the downstream layers (Ic’) and the difference 
appears as a line source (or sink) at 7 = 0, y = c and an equal line sink (or source) 
at 7 = 0, y = - c, where 7 is defined by (1 7 b).  The source and sink drive the flow 
in the EQ free shear layer (i) (Howard 1969). This flow involves the variables uf, 
wCi+, wLilf and @: while 

@: = @(o, x ) ,  @;+ = @$(o, Z) + 7 ao;/ax(o,  z), 
@; = @,f(o,z)  +ra@,/ax(o,~)+~72az@~/ax2(0,~). 

Therefore @{(O,z) = @$(O,  z ) ,  a@i/ax(o,  2) = a@,k/ax(o,z), (30 a, a) 
az@$axyo, Z) = az@:/ax~(o, z), (30 4 

a3@!/aX3(0, X )  = a3@k,/8X3(0, Z) + F4(z), ( 3 0 4  

where F4 is related to the strength of the source and sink at  7 = 0, y = & c, which 
in turn iEi related to F,, Fz and F3. 

The uiiknown functions @$(O,  z) ,  Fl, F, and F3 are now determined by condi- 
tions (30). Condition (30 b )  gives 

and condition (30 d )  gives 
F2 = 2-ic-44 

F3 = 2-Pc-#F1 - Fa. 
Condition (30c) now gives a Volterra integral equation governing F,. This 
equation has the form of a Laplace convolution with a kernel given by a Fourier 
cosine inversion. Once this equation is solved condition (30a) gives @g(O,z), so 
that the boundary-value problem governing @g(x, z )  is complete. In  this scheme 
the Volterra equation is homogeneous and its solution can be multiplied by an 
arbitrary constant. This constant is determined by the condition 

@ ( O ,  1) = I,  

which is equivalent to the normalization ( 2 ) .  
This analysis for the free shear layers has not actually been carried out since 

the object of the present paper is to obtain solutions for the high-velocity side 
layers in both the constant-area and variable-area ducts and these solutions do 
not depend on the solutions for the free shear layers or for the upstream core. 
Although specific solutions for the upstream core for various a have not been 
obtained, a simple separation-of-variables argument indicates that the most 
persistent part of the disturbance to the upstream fully developed flow dies out 
like exp (+..x) for all a. 
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FIGURE 6 .  z section used to approximate a general diverging duct between 
two constant-area ducts. 

6. General duct geometries 
The analysis presented in $53 and 4 for a prototype with straight walls can 

be extended to more general rectangular ducts with parallel sides. For a general 
diverging duct placed between two constant-area ducts with 

c for x < 0, 

f = {  e for x > I, 
the top and bottom of the diverging duct are approximated by series of straight 
walls connecting the lines 

xi = (i- l ) h ,  yi = kfi = 5 f(xJ (i = 1 , 2 , 3 ,  ..., n+ I ) ,  

where 1 = nh, as shown in figure 6. For the ith segment (xi < x < xi+l) the side- 
layer eigenvalue problems derived in $ 3  are solved for 

cli = n--l arctan [h-l( fi+l - fi)]. 

The solutions for the core and EB side layers at  z = 3.1 in this segment are 
expanded in the eigenfunctions corresponding to all the eigenvalues A? and yy' 
for this ui. In  the upstream constant-area duct (x < 0) there is a high-velocity E+ 
side layer a t  x = - 1 which carries no net flow (see figure 7) and which involves 
a set of unknown coefficients A ,  (m = 1 ,2 ,3 ,  .. .), while CD, = I and V+ = 0 
throughout the Ef side layer at  x = I .  In  the downstream constant-area duct 
(x > I) a, = constant and v-) = 0 throughout the E* side layer at  z = - 1, while 
there is a high-velocity E* layer at z = 1 which also carries no net flow and which 
involves another set of unknown coefficients C, (m = 1 , 2 , 3 ,  . . .), where 

c ,  = C, exp [mn e-l(Z - x)] 

are the functions of x in the series (22 )  which satisfy ( 2 3 d )  with c = e. The 
unknown coefficients in the n eigenfunction expansions for the solutions in the 

15 FLM 69 
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X = l  y=e 
I 

y=-c x=o 
L 

(b) cq 
y= --c 

I ' y=-e 

FIGURE 7. Sketch of streamlines for a general expansion placed between two constant-area 
ducts. (a) 5, z plane. (b)  Upstream E4 side layer at  z = - 1. (c) Downstream E* side layer 
at  z = 1. 

n segments of the diverging duct as well as A ,  and C, are determined by applying 
the matching (15) at  each join between segments: x = xi for i = 1,2,  ...,n+l. 
There is an E )  free shear layer between two E )  free shear layers at  each join xg 
and there is an O(1) flow across the duct within each pair of El layers. These 
layers obviously do not occur in the original duct with smooth top and bottom. 
In a qualitative way the transverse core flow in the original duct is divided in 
the approximate duct into a flow associated with the local wall slope, which is 
still carried by the core, and a flow associated with the wall curvature, which is 
now concentrated in the free shear layers. The limiting process h --f 0 and n -+ CQ 

is not a simple one. As h is reduced from O(1) to O(Ei),  ai+l - cli diminishes from 
O( 1) to O(E4) and the transverse velocity in the ES free shear layers diminishes 
from O(E-t) to O( l), while the Ea l3yers at adjacent joins merge and become the 
core. Thus the core flow in the approximate duct is quite different from that in the 
original duct and the evolution of the former into the latter would require a 
special analysis for h = O(Ei)  and perhaps another for h = O(E*), i.e. when the 
EB free shear layers merge. However the side-layer solutions for the approximate 
duct are good approximations to those for the original duct and it is these high- 
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velocity sheet jets which carry the flow along the duct. If an even better approxi- 
mation of the side-layer solutions is required, the present approximate solutions 
could be used as initial values in a numerical relaxation solution of the basic 
equations derived from (5 c,  d ) ,  (7 c) ,  (10) and (1 1). 

The extension to ducts with symmetrically diverging or converging sides a t  
x = & g(x) is relatively simple. Physically, the harmonic flow in duct segments 
with parallel top and bottom adjusts to the boundary conditions being applied a t  
z = 1 and the high-velocity side layers in segments with 
diverging or converging top and bottom simply follow the sides with no change 
of structure. This extension is discussed in more detail by Walker, Ludford & 
Hunt (1972) for the analogous problem of MHD flow in variable-area rectangular 
ducts with strong magnetic fields applied in the y direction. 

The present analysis coupled with that for variable-area circular ducts (Walker 
1974) can be extended to the flow in rapidly rotating ducts with any cross-sections 
which diverge or converge symmetrically about a centre-line which is perpendi- 
cular to the axis of rotation. 

g instead of a t  x = 
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